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Abstract: This study investigates the efficacy of an integrated science and literacy approach at the

upper-elementary level. Teachers in 94 fourth grade classrooms in one Southern state participated. Half

of the teachers taught the treatment unit, an integrated science–literacy unit on light and energy designed

using a curriculum model that engages students in reading text, writing notes and reports, conducting

firsthand investigations, and frequent discussion of key concepts and processes to acquire inquiry skills

and knowledge about science concepts, while the other half of the teachers taught a content-comparable

science-only unit on light and energy (using materials provided by their districts) and provided

their regular literacy instruction. Students in the treatment group made significantly greater gains on

measures of science understanding, science vocabulary, and science writing. Students in both groups

made comparable gains in science reading comprehension. � 2012 Wiley Periodicals, Inc. J Res Sci

Teach 49: 631–658, 2012
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It is widely acknowledged that robust science learning occurs most effectively through

firsthand experience combined with ample opportunities for reflection and rich talk

(Bransford, Brown, & Cocking, 2000; Brown & Campione, 1994; Metz, 2000; National

Research Council, 1996, 2000, 2011). While there has historically been tension between text-

dominated and experience-dominated science instruction (Cervetti & Barber, 2008), the

National Resource Council’s (2011) conceptual framework for the new science education

standards warns of the misrepresentation and marginalization of science and engineering in

an approach to instruction that:

Focuses predominantly on the detailed products of scientific labor—the facts of sci-

ence—without developing an understanding of how those facts were established or that

ignores the many important applications of science in the world. (p. 42)

Further, the NRC framework calls for the cultivation of science practices that reflect

those engaged in by professional scientists and engineers, including reading science text, and
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engaging in the specialized ways of talking and writing (p. 43). This represents a culmination

of more than a decade of interest in the roles of reading and writing in inquiry-based science

education (e.g., Glynn & Muth, 1994; Yore et al., 2004) and general growing interest in how

language and literacy can be used to support the goals of inquiry-based science1. In recent

years, many well-established inquiry-based science programs that began as predominantly

‘‘hands-on’’ approaches to inquiry have introduced texts in the form of science ‘‘readers’’ and

science ‘‘notebooking,’’ including the series of NSF-funded inquiry-based curriculum

programs initiated in the mid-1980s—programs that were born of the inquiry movement in

science education (e.g., Lawrence Hall of Science, n.d.; National Sciences Resource Center,

n.d.).

In a parallel but independent movement, reading educators have started to reconsider the

role of content knowledge and genre in learning to read. They have become increasingly

interested in how reading is shaped by genre and have started to question the wisdom of

anchoring early literacy instruction almost exclusively in fictional narrative texts when expos-

itory texts constitute much of school reading beyond the primary grades (Duke & Bennett-

Armistead, 2003; Palincsar, 2005) and when so many children find great interest in using

reading to understand the natural world around them (Duke & Bennett-Armistead, 2003).

Consensus is growing around the idea that genre makes a difference, that is, that students

need guidance in learning to negotiate the structural and rhetorical terrains of different genres

(RAND, 2002).

At the same time, knowledge—especially that which can be acquired through content-

area instruction—has come to be viewed by many reading educators as both a foundation and

a motive for reading. Palincsar (2005) describes the relationship between reading and knowl-

edge as follows:

Children who are exposed to text have opportunities to acquire knowledge of vocabu-

lary, background knowledge, and knowledge regarding how reading material is struc-

tured that children who are not exposed to text do not have. Students with this richer

knowledge base experience a bootstrapping of further vocabulary, real-world knowl-

edge, and knowledge of and comfort with the structure of texts. (p. 3)

Reading educators such as Neuman (2006) increasingly suggest that acquiring informa-

tion about the world is important in its own right and that it is a foundation for reading and

writing in the future. Moreover, reading as part of scientific investigations has been shown to

invite more engaged reading by providing both a context of growing expertise and a motive

for reading (e.g., Guthrie & Cox, 2001; Guthrie & Wigfield, 2000).

Research on Integration

The parallel movements in science and literacy education have given rise to impressive

lines of research that investigate what is possible when inquiry-based science goes beyond the

obligatory use of textbooks or science readers to embrace a more authentic and synergistic

relationship with learning to read and write as part of scientific inquiry (e.g., Guthrie,

Anderson, Alao, & Rinehart, 1999; Palincsar & Magnusson, 2001; Romance & Vitale, 1992,

2001). Two programs of science-literacy integration—the CORI program and In-depth

Expanded Applications of Science (IDEAS)—are particularly notable for their longevity and

for the impacts on student learning that they have demonstrated across both domains.

In CORI, instructional activities, including instruction in reading comprehension and

writing, focus on disciplinary conceptual understanding (Guthrie et al., 1999). Hands-on sci-

ence activities are used to support students’ concept development, to create situational interest

632 CERVETTI ETAL.

Journal of Research in Science Teaching



to energize their reading, and to provide opportunities for students to pose conceptual ques-

tions that can become the basis for reading activity and instruction. The goal of the CORI

program is to increase reading engagement and improve reading achievement through integra-

tion with content-area learning (Guthrie et al., 1999). Across a series of small-scale studies in

the middle elementary grades, the CORI intervention has consistently been associated with

positive outcomes for reading comprehension, reading strategy use, and conceptual under-

standing using a variety of performance tasks and paper-and-pencil measures; often the posi-

tive effects extend to measures of reading motivation (Guthrie et al., 1999; Guthrie et al.,

2009).

In IDEAS classrooms (Romance & Vitale, 1992, 2001), the time that is traditionally

allocated to language arts instruction is replaced by a joint science-reading program. The

IDEAS model includes concept-focused teaching, firsthand activities, reading, writing, and

the construction of propositional concept maps based on reading. The IDEAS model places

the in-depth study of core science concepts at the center of instruction both as a way of

improving science teaching and creating coherence among literacy and science activities.

Romance and Vitale (1992, 2001) have demonstrated through a long series of studies that

IDEAS students outpace comparison students on standardized measures of science and read-

ing achievement and display more positive attitudes toward and self-confidence in reading

and science. The researchers attribute these results to the focus on conceptually meaningful

structured knowledge development as an organizing mechanism that links the various first-

hand science activities and literacy activities. The alliance between science and literacy was

initiated as a way of reclaiming time in the school day for science instruction, but the

researchers have demonstrated in a series of studies that reading achievement also benefits

from integration.

While CORI and IDEAS are the longest-standing programs of science–literacy integra-

tion at the elementary level, there are a number of other efforts to integrate science and

literacy instruction that have demonstrated similarly impressive effects on student learning.

Notably, Varelas, Pappas, and their colleagues (Varelas, Pappas, & Rife, 2006; Varelas &

Pappas, 2006) have conducted a series of studies that examine the relationship between dia-

log, text, hands-on experiences, and science understanding. In one of these studies, Varelas

and Pappas (2006) examined the intertextual connections made by first and second grade

students as they engaged in dialogically oriented read alouds in science. The researchers

found that students made more intertextual connections among texts, discussions, and experi-

ences as the unit progressed and that this intertextual connection-making provided opportuni-

ties for students to develop more conventional forms of scientific ideas and scientific

language.

More recently, Fang and Wei (2010) examined the efficacy of a year-long inquiry-based

science program for 6th graders with and without reading infusion. The reading infusion

included reading strategy instruction and out-of-school reading of science trade books.

Students who participated in the reading infusion condition made greater gains on a standard-

ized assessment of reading ability and a curriculum-referenced science test, and received

higher science grades compared with students who participated in the inquiry-based program

alone. The researchers conclude that strategy instruction enabled students in the reading infu-

sion condition to better cope with content-area texts, improving their learning in both reading

and science.

Our efforts build on these programs, particularly CORI and IDEAS. Most notably, we

have appropriated the goal of developing knowledge of important science concepts, both as

an end unto itself and as a means of engendering purposes for and engagement in reading. In
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addition, we readily accept Guthrie and Alao’s (1997) idea that the resulting synergy pro-

vokes students to process text deeply. Like both of these programs, the experimental program

in this study embeds cognitive strategy instruction into the integrated curriculum and rely on

firsthand science activities both to advance conceptual understanding and to build knowledge

in support of reading. Finally, we share an underlying conviction that science can provide an

authentic context for applying reading and writing skills and strategies.

The study described in this article investigates the efficacy of integrated science

and literacy instruction at the upper-elementary level. This investigation employs a

curriculum model, instantiated in a unit about light that engages students in reading,

writing, investigating, and discussing to acquire knowledge about important science concepts,

inquiry skills, and literacy skills that students need to be successful in science. The program

of research and development that includes the present study was initiated as an attempt to

reconceptualize inquiry-based science instruction as inseparable from scientific literacy

practices.

The Treatment Model of Science–Literacy Integration

According to Stoddart, Pinal, Latzke, and Canaday (2002), there are three principal

approaches to the integration of content areas: (i) a thematic approach characterized by the

use of overarching themes to create connections among domains; (ii) an interdisciplinary

approach in which content or processes in one domain are used to support learning in another;

and (iii) an integrated approach, in which emphasis on two or more domains is balanced.

The model of science–literacy integration examined here is situated squarely within the inte-

grated tradition. The model was developed by a team of science and literacy educators and

researchers (including some of the authors of this article). The broader program of research

and curriculum development began eight years ago as an attempt to infuse authentic scientific

literacy practices into existing inquiry-based science units in order to enhance learning in

both domains. We viewed integration as an opportunity to enhance science learning by

making it better contextualized, more informed, and better documented. We also viewed

integration with science as an opportunity to situate literacy instruction in a powerful

knowledge-building domain.

The conceptual framework underlying this work rests on the idea that an integrated

model that honors two disciplinary traditions can build mutually reinforcing relationships

between literacy and science inquiry. One example of principle of mutual benefit through

integration rests in the model’s approach to the use of text. While many inquiry-oriented

science educators have expressed concerns about text undermining the process of scientific

investigation (e.g., Yore, 2000), we developed a series of roles for text that directly support

students’ involvement in inquiry, that provide meaningful (investigation-driven) experiences

with nonfiction text genres, and that mirror the ways that scientists use text in investigations.

Cervetti and Barber (2008) provide a detailed discussion of these roles. Briefly, reading pro-

vides opportunities for students to revisit concepts about physical phenomena experienced

directly or through models in the classroom, to view these phenomena in the wider context of

the world outside of the classroom, and to learn about how these phenomena are studied by

professional scientists. For example, in the light unit that served as the treatment in this study,

students consult findings from their own investigations of light as well as a reference book

that provides data about the interactions of light with different materials. Students use data

from the book to extend and challenge their firsthand observations of light interacting with

different materials. Texts are also used in the light unit to model the processes and disposi-

tions that real scientists bring to their work and to learn about the difficult-to-observe role of
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light in vision. The model of science–literacy integration under study here relies on the under-

standing that these kinds of text-based experiences deepen students’ involvement in firsthand

investigations, enhance students’ conceptual understandings, and support their ability to navi-

gate science text.

The conceptual framework for our model of science–literacy integration also relies on

the idea that inquiry-based science and literacy share skills, strategies, and goals that can be

capitalized upon as the central features of integrated instruction. For example, both literacy

education and science education share an interest in using discussion to support sense-making

and comprehension of complex ideas. The development of the experimental model was in-

formed by studies over the previous two decades that had started to shed light on the role of

discussion in supporting students’ development of conceptual understandings in science,

meaningful participation in scientific inquiry, and ability to communicate their scientific

understandings (Mercer, Dawes, Wegerif, & Sams, 2004; Richmond & Striley, 1996; Syh-

Jong, 2007).Taken together, this research suggests that talk supports students’ science learning

in at least three ways. First, discussions provide opportunities for knowledge sharing and co-

reasoning (e.g., Rivard & Straw, 2000). Students not only share information that, taken to-

gether, contributes to more coherent understandings and more successful problem-solving

than could be accomplished alone, they also use dialog to talk through, clarify, and negotiate

their growing understandings with others—forms of processing ideas that ultimately support

understanding (Gee, 2002; Rivard & Straw, 2000). Second, talk can help make models of

scientific thinking and reasoning available to students (Duschl & Osborne, 2002). Elusive

scientific practices, such as weighing evidence and evaluating claims, can be made visible in

talk. Third, talk creates opportunities for students to experience science as a process of revi-

sion and, therefore, to learn about the nature of scientific knowledge in addition to science

concepts (Driver, Newton, & Osborne, 2000; Herrenkohl, Palincsar, DeWater, & Kawasaki,

1999). The model of integration investigated here involves a central role for student-to-

student talk as a way of making sense of science investigations and gaining insight into the

nature of scientific reasoning.

The model of science–literacy integration under study further relies on the understanding

reading and scientific investigation are both acts of inquiry—driven by an interest in under-

standing and by a motive of gathering and making sense of evidence in order to learn about

the natural world— and there is some evidence that inquiry and comprehension share goals,

functions, and strategies (Padilla, Muth, & Lund Padilla, 1991). In our work on science–

literacy integration, we have often used the word, ‘‘synergistic’’ to describe this relationship

(Cervetti, Pearson, Bravo, & Barber, 2006). For example, predicting, inferring, and question-

ing are as central to ‘‘inquiry’’ in the discipline of science as they are the core of the ‘‘com-

prehension’’ in the literacy domain. In our development of integrated instruction, we take

advantage of this synergy by targeting pairs of highly related inquiry/comprehension strate-

gies. In the light unit used in this study, for example, students predict which materials will

block light before their first-hand investigations, and they make predictions before and during

reading. In each situation, students revise their predictions based on additional evidence they

gather. Students are asked to reflect on the similarities and differences of prediction in the

two contexts.

An additional synergy between science and literacy rests upon the understanding that

mature word knowledge in science can be described as conceptual knowledge. In science,

word knowledge involves understanding of words as they are situated within a semantic net-

work of other words and ideas. From this perspective, word learning in science can be

approached as conceptual learning—that is, words can be thought of as the surface-level
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instantiations of underlying concepts that can be connected to other concepts to form rich

conceptual networks (Armbruster, 1992; Bravo & Cervetti, 2008). For example, within the

light unit, we treat word learning as conceptual learning by (i) providing students with repeat-

ed, multimodal (during inquiry activities, conversations, text reading, and writing) exposure

to conceptually important, related words in the context of ongoing investigations; (ii) engag-

ing students in activities that help them see the deep relationships between concepts/words;

and (iii) providing opportunities for students to build an active understanding of the concepts/

words through talk and writing. In addition, we believed that topically narrow reading would

support students’ conceptual vocabulary learning by providing opportunities to encounter the

words repeatedly in meaningful contexts, building knowledge that would increasingly support

their comprehension of subsequent content-relevant texts (Krashen, 2004).

The experimental model distinguishes itself from earlier efforts in several ways. First, we

have sought to be more explicit in attending not only to the ways in which science supports

literacy development, but also to the ways in which literacy supports science development,

that is, the authentic roles that language and literacy can play in supporting knowledge acqui-

sition and involvement in inquiry. In particular, we set out to develop a curriculum-based

model of science–literacy integration that would serve both domains equally by (a) capital-

izing on the knowledge-building context of science for supporting students’ reading compre-

hension, informational writing, and academic language, and (b) enriching students’

experiences in inquiry science by including reading, writing, and discussion. Second, we have

made language a more central focus of our curriculum model. Building on Yore’s notion that

language is a ‘‘critical communication and thinking tool’’ that is ‘‘integral to science’’ (Yore,

2004, p. 71), we designed a model of integration that attends to students’ development of

academic and technical vocabulary, their involvement in sense-making talk around their

investigations, and their ability to communicate their growing understandings in talk and

writing. Third, in a direct attempt to respond to the critique by science educators of text-based

approaches to teaching science (e.g., National Research Council, 2000), we have actively

avoided the supplanting of investigations with reading by developing and implementing an

elaborated model of how text can and should support inquiry-based science (Cervetti &

Barber, 2008).

Research Design and Method

Design

In this article, we investigate the efficacy of an integrated science and literacy approach

to instruction as compared to separate, content-comparable science instruction and literacy

instruction. We test a model of integration as instantiated in a curriculum unit for fourth grade

students. This study asks, How does an integrated approach to science–literacy curriculum

compare to business-as-usual approaches in terms of outcomes of science understanding,

reading comprehension, science vocabulary and science writing? During the 2007–2008

school year, we conducted an experimental study to address this question. The study examines

the efficacy of a light unit as one instantiation of our model of science–literacy integration.

Participants

The study took place in one Southern state, selected as the study site because of

the close correlation between that state’s fourth grade science standards addressing the

topic of light and the content of the treatment unit, enabling us to readily locate content-

comparable comparison sites. In addition, the state has a strong system of standards
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compliance, including regular site visits to verify that teachers at each school are engaged in

on-topic standards-based instruction. This increased the predictability of content-comparable

business-as usual instruction. Teachers were recruited with the assistance of district-level sci-

ence coordinators. We engaged in two rounds of recruitment—one for Fall 2007 and one for

Spring 2008. Several meetings were held at sites across the regions to inform principals and

teachers about the project. In order to participate in the study, a teacher had to be teaching

fourth grade and have available a minimum of three hours per week for a minimum of eight

weeks for unit implementation. This time constraint applied to both the treatment and com-

parison groups.

A total of 100 applications were received. Three applicants were denied participation;

one of these applicants did not meet the eligibility requirement of being able to teach science

for a minimum of three hours per week, and the other two submitted incomplete applications.

Three teachers dropped out of the study after being accepted but before beginning to teach.

One of these teachers declined to participate for personal reasons, and the other two were

unable to secure administrative approval to participate. Thus the study population consisted

of ninety-four teachers (60 in Fall 2007, 34 in Spring 2008) from 16 school districts. The

districts were located in urban, suburban, and rural areas in the same southern state.

After being accepted into the study, each teacher was randomly assigned to either a

treatment or comparison group using a random number generating algorithm that is part of

the Microsoft Excel software. Results indicate that treatment teachers were less experienced

both in total years of experience (9.2 vs. 11.6 years among comparison group teachers) and

years teaching at grade four (4.4 vs. 5.6 years). Comparison teachers were also more educat-

ed, with 51% versus 34% having an advanced degree. Neither the differences in experience

or in advanced degrees was statistically significant. Advanced degrees held by teachers in

both the treatment and comparison groups were almost entirely in education (including early

childhood education, special education, educational leadership, educational technology, etc.)

and/or psychology. Only four out of the 94 teachers reported having advance degrees in

another area. (fisheries, biology, sociology, social work). Salary (as indexed by the natural log

of salary) was roughly equal across groups. Class size was roughly equal across conditions.

The student demographic characteristics presented in Table 1 are based on the means for

fourth grade students at participating schools during the 2007–2008 school year. We estimated

the student demographic characteristics for the treatment and comparison groups by assuming

that the distribution in a given classroom would reflect the distribution within that grade for

the entire school. The mean percentage of students receiving free or reduced price lunch in

the treatment schools was 57.6; in comparison schools, it was 52.9.

Table 1

Student participant characteristics

Characteristic Comparison classroom (%) Treatment classroom (%)

Gender
Female 49.7 49.3

Ethnicity
Asian/Pacific Islander 2.7 2.8
African-American 35.7 38.5
Hispanic 5.7 7.1
Native American 0.5 0.9
Multiracial 2.4 2.2
White 53.1 48.5
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Treatment and Comparison Interventions

Treatment Intervention. The unit that served as the treatment intervention in this study is

designed to engage students in reading, conducting firsthand investigations, discussing, and

writing in the interest of developing their conceptual understandings about the characteristics

of light, light interactions, and light as energy. We were guided in the development of the

curriculum intervention by a set of principles for science–literacy integration.

Teachers in the treatment group were given a set of researcher-designed integrated

science–literacy materials on the topic of light. The treatment unit focused on the character-

istics of light, light interactions, and light as energy. While we believe that the most robust

approach to supporting change in instruction will come about through providing teachers with

curriculum and associated professional development, the purpose of the study reported here

was to learn more about the curriculum portion of the equation. Accordingly, treatment teach-

ers conducted an ‘‘out-of-the-box’’ implementation, receiving only the curriculum materials.

Teachers in the treatment group received a teacher’s guide with step-by-step instructions on

each left hand page and text designed to provide related information and support on each

right hand page. The right hand page teacher support included content and pedagogical infor-

mation, instructional rationale, and suggestions for modifying the instructional sequence

according to the characteristics and needs of different implementation contexts. In addition to

the teacher’s guide, teachers in the treatment group received 18 copies of nine different

researcher-designed nonfiction science books (most ranging from 18 to 24 pages each), an

investigation notebook for each student, and a kit of materials for students to use in the

firsthand activities of the unit, including materials such as flashlights and hand lenses.

The treatment unit was forty sessions in length, comprised of four investigations—each

with 10 sessions. Sessions were designed to be taught in 45–60 minutes. In each 10-session

investigation the equivalent of approximately four sessions are devoted to firsthand (hands-

on) activities, two sessions to reading, two sessions to writing, and two sessions to discourse,

review of important concepts, or assessment activities. While this framework guided the de-

velopment of the unit, and the treatment unit held the proportion of learning modalities con-

stant across each investigation, the flow of the instruction was designed to be seamless and

coherent. The following description of the first of the four investigations in the light and

energy unit provides an example of the how the instruction flows.

In Investigation 1: Characteristics of Light, students begin by reflecting on what they

know and wonder about light. They make the first of many predictions before reading Can

You See in the Dark?, a book that invites students to wonder about whether or not people

need light to see. This book introduces the idea that all light comes from a source and enables

students to identify sources of light in the text and illustrations. Next, students go on to

investigate with flashlights— their own light sources—to see what they can observe them-

selves. Their investigations involve students in making predictions, gathering evidence, and

then revising their predictions to reflect new evidence. They then make light tubes and use

them to gather evidence that light travels in a straight line. The class begins the creation of

the Class Concept Wall (a giant concept map on the wall of the classroom). After making

predictions, they read The Speed of Light, a book that presents data comparing the speed of

light to other fast things through descriptive examples and in tables. By reflecting on the

data, the students are better able to understand how fast light travels—a characteristic that is

impossible for them to observe firsthand. Using key words, students construct main idea state-

ments about passages in the book. They summarize what they have learned about the charac-

teristics of light by writing details to support a topic sentence.
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Approximately, 40% of the treatment unit (four sessions for each of the four investiga-

tions) involved students in using firsthand investigations to gather evidence about the charac-

teristics of light, light interactions, and light as energy. Investigations were driven by guiding

questions such as, ‘‘What are the characteristics of light?’’ ‘‘What materials transmit light?’’

‘‘What materials reflect light?’’ and ‘‘How do lenses interact with light?’’ and involved stu-

dents in using manipulatives. While the unit involves students in engaging in a variety of

inquiry practices, teachers provided explicit instructions and systematic opportunities for

practice related to the strategies of: making predictions, summarizing, evaluating claims and

evidence, and making explanations from evidence. These focus strategies in inquiry were also

selected as the focus strategies in reading (making predictions) and writing (summarizing,

evaluating claims and evidence, and making explanations from evidence). Once students had

been introduced to a cognitive strategy, such as predicting, in the context of reading, the

teacher would re-instruct the strategy in the context of firsthand investigations, first reminding

students about the utility of the strategy for reading and then discussing its application in

firsthand investigations. Students then practiced using the strategy in their investigations—for

example, using the strategy of prediction to leverage what they already know in order to think

ahead about the process and possible outcomes of a firsthand investigation.

Approximately, 20% of the treatment unit (two sessions for each of the four investiga-

tions) involved students in engaging with student science books. The student science books

were designed to serve specific roles in supporting students’ involvement in the unit’s first-

hand science investigations (Cervetti & Barber, 2008). The books were also designed to sup-

port students’ development of fluency, vocabulary, comprehension, and understanding of

informational text features and structures. The model of text and its role in supporting stu-

dents’ literacy development has been described at length by Hiebert (2006). The texts offered

students repeated opportunities to encounter specific, targeted vocabulary words related to the

topic of light (e.g. absorb, block, characteristic, emit) and ‘‘academic’’ words (words that

are commonly used in science and other school disciplines) that are highly useful as they

communicate about their investigations (e.g., analyze, claim, data). The books also featured

an array of common nonfiction text features (e.g. headings, diagrams, captions, table of con-

tents, index) that were used to teach students to navigate and comprehend science text. The

nine books in the unit were designed to build in their conceptual complexity over the course

of the unit as a way of building knowledge to support students’ comprehension of subsequent

texts.

Within each unit, eight sessions were devoted to reading the science books. Instruction in

the reading sessions was organized using a before, during, and after reading framework.

Before reading, students were typically engaged in setting goals for their reading related to

their ongoing investigations, and they were often introduced to a selected comprehension

strategy, such as predicting and summarizing. Each strategy was instructed using a gradual

release of responsibility approach (Pearson & Gallagher, 1983) in which the teacher: (i) di-

rectly explained and modeled the strategy, (ii) provided guided practice with the strategy in

the context of reading, (iii) provided opportunities for independent practice during reading

over the course of the unit, and (iv) regularly discussed the utility of the strategy and applica-

tion to other situations. Students read the books in partners, and then engaged in a whole class

discussion of their learning from the text and, if applicable, the utility of the comprehension

strategy introduced before reading. Students often used these eight books and a ninth refer-

ence book at different points throughout 40 sessions in order to obtain information related to

their investigations. The treatment unit also offered explicit instruction in the use of targeted

inquiry skills and literacy strategies and ongoing opportunities for the application of these
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skills and strategies in firsthand situations and in text. These skills and strategies included

making predictions and summarizing. An additional 20% of the treatment unit focused on

writing. In the light unit, students received explicit instruction and repeated opportunities for

practice in writing summaries of what they were learning (main idea and supporting details)

as well as writing scientific explanations (claim and evidence). As with reading comprehen-

sion, writing instruction was structured using a gradual release of responsibility approach. For

writing summaries, teachers instructed, modeled, and provided practice opportunities for stu-

dents related to creating main ideas and supporting details. Constructing main ideas was

instructed using a key word strategy, in which students identify the most important words in a

reading passage and use those words to create a main idea statement. Adding supporting

ideas was instructed using a concept map approach to organize ideas for supporting details

around the main idea statement. For writing scientific explanations, teachers instructed how to

use data tables to summarize results of investigations, how to use that summary to write a

claim, and then how to support the claim with evidence from the data table. In addition, there

were multiple opportunities for students to engage in reflective writing through periodic

reflections.

Approximately, 20% of the plan for the unit was devoted to a collection of activities

related to reflection and formative assessment, including regular opportunities for informal

student-to-student talk, reflection on word relationships, and structured small group discus-

sions (discourse circles) of science content and processes. Each of these reflection and dis-

course activities were repeated instructional routines. One repeated full-session routine called

Discourse Circles, involved students working in small groups to analyze a statement, collect

evidence that supports the statement and evidence that refutes it, and then engage in a discus-

sion about whether the evidence leads them to agree or disagree with the statement. Teachers

were guided in facilitating whole class discussions using several class reflection routines in-

cluding the Debrief Discussion in which the teacher uses a series of questions to invite stu-

dent to share the evidence they gathered during an investigation and their conclusions based

on the evidence.

Comparison Group Intervention. Teachers in the comparison group were asked to present

the content of their state science standards related to the topic of light, using curriculum

materials they regularly use for the same amount of time each week and for the same dura-

tion. The treatment light unit included content related to two of the three major subtopics of

the state’s light standards: characteristics of light and light interactions. A third subtopic (light

and color) appears in the state standards, but is not addressed in the treatment light unit.

Conversely, a third subtopic that is addressed in the treatment light unit (light as energy) does

not appear in the state standards. Thus, while teachers used a variety of different materials to

teach these standards, the standards were well-aligned with the treatment light unit, thus

creating a content-comparable comparison. See Table 2 for a comparison of the light treat-

ment unit and the state standards. As we describe below, the analysis of science learning

Table 2

Comparison of light content state standards and the treatment light unit

Characteristics

of light

Interactions

of light

Light and

color

Light as

energy

Light-related state standards � � �
Treatment light unit � � �
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focused on items that address the two overlapping topics, characteristics of light and light

interactions.

Data Collection

Data collection took place in two waves—Fall 2007 and Spring 2008—so that teachers

could participate according to the science content coverage timelines for their respective dis-

tricts. A student pretest assessing student knowledge of science vocabulary, reading compre-

hension, and science understanding related to the topic of light, was administered by research

staff in all treatment and comparison classrooms. Teachers then taught either an integrated

science–literacy unit on light (treatment) or their regular science lessons on light (compari-

son) and their regular literacy instruction. Immediately following the completion of the unit,

researchers administered a post-test (identical to the pretest) to the students as part of their

classroom activities. In addition, an assessment of student writing was administered by teach-

ers before and after they taught their light unit and returned to researchers via U.S. Mail.

Teacher measures included a background survey and an end-of-unit survey regarding their

teaching practices during the study.

Student Learning Measures

The student learning outcomes were measured through a pre–post assessment developed

through a process coordinated by the Center for Research, Evaluation, and Assessment at the

Lawrence Hall of Science in partnership with the curriculum research and development team.

Items included in the assessment were selected based on three criteria: (i) centrality to the

domain and (ii) alignment with state science content standards, and (iii) alignment with

the content covered in the treatment unit. An independent scientist review panel evaluated the

items for fit with criterion (i), an affiliated assessment specialist evaluated the items for fit

with criterion (ii), and the R&D team evaluated the items for fit with criterion (iii). The

assessment validation process included the external reviews related to criterion (i) above as

well as studies of multiple iterations of pilot assessments. Wherever possible items were

drawn from existing validated assessments. In other instances, items were developed and

reviewed by a team of assessment developers, curriculum developers, and classroom teachers.

The first set of items (Version 1) were developed in classrooms alongside the treatment

curriculum as it was being developed and field tested in a study that took place approximately

one year prior to the randomized experiment reported herein. Student responses to the field

test items were used to refine the items, and the revised instrument was tested in a validation

study (n ¼ 166). The validation study version of the assessment (Version 2) included 76-

items designed to assess students’ mastery of science vocabulary, reading comprehension,

science writing, and science understanding. Each scale was examined for dimensionality and

reliability as well as for item fit, difficulty and distribution. The science understanding scale

was also examined for correlations with each teacher’s ratings of their individual students’

science abilities on a three-point scale (low-medium-high).

Rasch analysis revealed a good range of difficulty and alignment to student ability. At

the same time, reliabilities for the scales were modest—ranging from a ¼ 0.47–0.67. Further

principal components analysis suggested problems with dimensionality, with some items load-

ing more strongly on a second component within a given scale. As an index of concurrent

validity, we found that the correlations between students’ science understanding scores and

teacher ratings of their level of science ability were statistically significant, but with more

overlap in scores across levels than desired. This suggested that the scale was well aligned

with teachers’ science content goals assessments but also that there was a need to improve

INTEGRATING SCIENCE AND LITERACY 641

Journal of Research in Science Teaching



scale reliability. The results from the validation study led the team to modify and/or replace

items so that there were a sufficient number of items addressing the construct of interest for

each scale.

Science Understanding Measure. The final makeup of the science understanding measure

consisted of forty-two multiple choice items; 15 had two answer choices, while the remaining

27 items had four response options. Research staff categorized 19 items as factual measures

of declarative knowledge. The remaining 23 items were categorized as schematic or strategic

measures of conceptual understanding.

For the purpose of the study described herein, we analyzed a subset of these items. This

subset includes 23 items that were determined by external science experts to fairly assess

both the content of the treatment unit and the state science standards that guided instruction

for the comparison group. By utilizing this subset of data, we even further increase the likeli-

hood that the content of the assessment was included in the comparison classrooms as it was

in the treatment classrooms.2

Given the iterative process of measure development, reliabilities were calculated on the

final versions of these assessments using the data collected for the study itself. The reliability

for the science understanding measure is based on the 23 items included in the analysis for

this article. The alpha reliability of the final measure was 0.84 at pretest and 0.81 at post-test.

Science Writing Measure. The writing assessment asked students to respond to an open-

ended prompt, ‘‘How does light interact with materials? Give three examples.’’ It was

expected that students who had not learned about light (at the pretest) would still be able to

address this prompt in some way, while students who had studied light would be able to

describe at least three interactions, give evidence of those interactions, and/or explain what

was happening in each type of interaction.

Rubrics were developed by project staff for six dimensions: use of evidence, introduction,

clarity, conclusion, vocabulary definition, and science content. The dimensions are described

in Appendix SA3. A count was also done for the number of times students used science

vocabulary words in their writing (vocabulary count). This count was included in the analysis

as a seventh dimension of science writing. A subset of randomly selected student papers was

used to refine the scoring rubrics. The science writing assessments were scored by project

staff and trained undergraduate students at University of California, Berkeley. The writing

tests were blind-scored as to condition and time point (pre-or-post).

A subset of matched pretest and post-test science writing assessments were randomly

selected from each of the classrooms for which both pretest and post-test science writing data

was returned by teachers. In all, the work of 467 students was scored. Each scorer achieved a

90% or higher inter-judge reliability score with an assessment specialist on the six rubric-

based Science Writing dimensions and the seventh dimension, vocabulary count. Twenty per-

cent of the 467 articles were used to initially calculate inter-rater reliability among scorers.

The remaining 80% of tests were to be scored after the external evaluator concurred that we

had achieved a sufficient level of inter-rater reliability. After the scorer training sessions, the

scoring process began with double-scoring of each dimension on the science writing prompt

rubric for a 20% sample of the remaining papers. Differences were resolved by project staff,

and scorers were retrained as needed. The overall inter-rater reliability for the scoring of the

seven writing dimensions was 0.85 at pretest and 0.79 at post-test.

Science Vocabulary Measure. Items were developed for the science vocabulary measure

using two item formats: a definition matching format designed to test whether students can
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identify the meaning of the words from a list of possible definitions, and cloze item formats

that were designed to test students’ ability to apply knowledge of the words in context. Words

for the assessment were selected based on expert assessments of their centrality to the topic

of light. All of the words were instructed in the treatment unit as part of a much larger set

and appeared in the student books, and all but one appeared in the standards that served as

a guide for the comparison teachers. Sixteen items were included in the draft for the valida-

tion study. The reliability for the 16-item measure was 0.61. Following the validation study,

we replaced three poor-performing items (that were very easy or had poor discrimination

values).

The final science vocabulary measure included 15 items. Eight of these were multiple-

choice definition matching items for the words reflect, transmit, emit, refract, shadow, light,

interact, and transform. Students were given the target word and asked to select the best

definition from four options. The remaining seven items were multiple-choice cloze sentences

for the words reflect, refract, transmit, transform, shadow, interact, and absorb. Students were

given sentence with blank and asked to select a word to fill in the blank. The same target

words were used across the two item-types, because the item formats were designed to elicit

different kinds of understandings about the words. While the definition matching items were

designed to test whether students can identify the meaning of the words, the cloze items were

designed to test students’ ability to apply knowledge of the words in context. The reliability

of the final measure was 0.43 at pretest and 0.69 at post-test.

Reading Comprehension Measure. The reading comprehension measure is a researcher-

designed set of expository passages and multiple-choice questions. The multiple-choice items

for each passage were developed using a framework of item types—recall, main idea, infer-

ences, predictions, and questioning. Item developers were given descriptions of these types,

as well as examples and sentence frames. Once a pool of items had been developed that

included each type, items were selected based on a review by the development team. This

measure was tested as part of the initial validation study described above. The reliability for

the instrument was 0.67. We determined that many of the items were easy (with p-values

above 0.85) and that there were too few items overall.

Given these results, we developed a second version of the measure, adding more chal-

lenging items and increasing the number of items to 16. We replaced one passage—a passage

about bats—with a more difficulty passage about hummingbirds, which had also been validat-

ed as part of a different research study. We then conducted a second validation study of this

revised reading comprehension measure. For the purpose of the second study, we adminis-

tered the revised reading comprehension instrument to 202 students from diverse back-

grounds. The reliability improved (0.70). Based on these results, we modified the instrument

slightly—changing the distracters on one item and replacing one item—before administering

as part of this study. The reliability of the final measure was 0.77 at pretest and 0.76 at post-

test.

Data Analysis Procedures

Given that students were assigned to treatments by teacher and given that teachers were

nested within schools, a multilevel modeling framework was used to take advantage of the

data structure by examining the potential impact of context on treatment effects. By using a

three-level random effects model, we are able to divide the variation in achievement into

between-student, between-teacher, and error components. This is particularly important be-

cause data containing multiple levels of aggregation can lead to errors in interpretation when
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these multiple levels are ignored (Aitkin & Longford, 1986; Burstein, 1980). A basic two

level unconditional model is akin to the traditional ANOVA model, although more flexible

with respect to assumptions and modeling options (Raudenbush & Bryk, 2002).

In this study, we utilized various multilevel models (MLM) that are derivative of the

three level model that we present below. We utilized a three-level MLM to examine

the research hypothesis that the treatment intervention has a significant impact on student

performance on measures of science understanding, writing, science vocabulary, and reading

comprehension. We briefly present this model below. In general, the model consists of three

levels and allows for a flexible specification of the covariance structure at every level of the

analysis (Snijders and Bosker, 1993).

The level one model is:

Yijk ¼ r0jk þ eijk; (1a)

where Yijk is the outcome (e.g., science understanding assessment) for student i in class4 j in

school k, and represents the unconditional, or base, level one model. Where p0jk represents

mean outcome of classroom j in school k and eijk is a random student effect.

At level two (between teachers, within schools) we model the impact of the treatment,

given that treatment assignment was by teacher (teacher level).

p0jk ¼ b00k þ l01kTRTjk þ r0j (2)

In (2) b00k represents the school mean performance while l01k represents the treatment

effect, r0jk is a random teacher effect. Using (2) alters the interpretation of p0jk. Now p0jk is

the mean class performance of comparison classrooms and p0jk þ l01k is the mean perfor-

mance of treatment classrooms.
b00k ¼ g000 þ u00k

l01k ¼ g010

(3)

In (3) g000 is the grand mean of student performance. g010 is the overall treatment effect.

The level one model represented in (1a) can be further specified to account for differ-

ences in classroom intake characteristics, for example, pretest performance or student back-

ground characteristics. The level 1 model becomes:

Yijk ¼ p0jk þ p1jkðYijkY��kÞ þ eijk; (1b)

Hence, p0jk becomes the adjusted mean outcome of comparison5 classroom j in school k.

p1jk ¼ b10k þ g11kTRTjk þ r1jk (2b)

Given the extension (or possible extension) in (1b), the level two model can be re-

specified to include treatment indicators. Hence, b10k represents the mean class relationship

between the pretest and the post-test in comparison classrooms. g11k represents the cross-level

interaction between the treatment and pretests scores. Whereas g01k represents the main effect

of the treatment, that is, did treatment classrooms outperform comparison classrooms, given

pretest performance, g11k estimates whether the treatment is differentially effective for stu-

dents with different levels of preparedness, that is, pretest scores. This cross-level interaction

can be used to test whether the treatment is differentially more effective for low achievers or
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more effective for high achievers. Additional student characteristics can be added to (1b) and

tested by expanding (2b) (e.g., including ELL status in model 1b and adding a g11k TRTjk

into 2b).

At level three we account for the fact that classrooms are nested within schools. Using an

average pretest for the classroom tests the impact of the classroom average achievement, or

context, on individual student post-test performance. Interactions between school level varia-

bles test whether school context impacts student performance after accounting for student and

teacher inputs.

Results

Teachers

Table 3 includes descriptive results for teacher practices as derived from teacher surveys.

Table 3 also presents indicators of teacher practices prior to the treatment period. This

includes both time and instructional mix. A key element of pre-existing teacher practice is

experience with and disposition toward inquiry-based teaching practices. Employing a stan-

dard of reporting the use of hands-on practices at least 25% of the time, 73% of comparison

teachers as compared to 61% of treatment teachers would be considered inquiry-based at the

start of the study. Also important is the fact that comparison teachers reported teaching the

topic light more often than treatment teachers prior to this study.

Students

Table 4 presents descriptive results for the Student Assessments. These results indicate

that mean scores on the science vocabulary, reading, and science tests were higher on the

post-test than on the pretest in both the comparison classrooms and treatment classrooms. For

each (treatment and comparison) group, attrition from pretest to post-test varied by subject

and was generally around 5%. For science understanding and science vocabulary the null

Table 3

Descriptive results for teacher practices

Comparison classrooms Treatment classrooms

Mean n SD Mean n SD

Pre-study teacher practices
Hrs Sci. Instruct 3.74 47 1.19 3.59 47 1.04
Hrs Lit Instr. 9.57 47 4.39 9.84 47 5
Inquiry-based 0–24% 0.28 47 0.45 0.38 47 0.49
Inquiry-based 25–49% 0.38 47 0.49 0.38 47 0.49
Inquiry-based 50–74% 0.26 47 0.44 0.21 47 0.41
Inquiry-based 75–100% 0.09 47 0.28 0.02 47 0.15
Number times taught light 3.69 47 4.16 2.84 47 2.56

During study teacher practices
Hours teaching science/wk 3.03 47 1.18 3.66a 47 102.6

Percent of science time students spent
Doing hands on inquiry 26.85 47 18 24.7 47 10.5
Reading 22.55 47 15.6 19.92 47 8.88
Class discussions 24.68 47 12.5 24.89 47 7.26
Science writing 11.49 47 6.09 15.61a 47 7.57
Science vocabulary 14.74 47 9.2 14.78 47 5.71

aDifference between treatment and control significant at P < .05.
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hypothesis that pretest scores differed based on the missing status of post-test scores could

not be rejected. However, in reading there was evidence that students missing post-test scores

had somewhat higher (0.16 SD) scores on the pretest. Comparison students’ reading pretest

scores were about 0.30 SD higher for non-missing post-tests, while treatment students’ read-

ing pretest scores were about 0.06 SD higher. Results based on alternative specifications6

were robust and consistent with results presented below.

Pretest Scores. Preliminary multilevel models using pretests as outcomes indicated that

pretest science understanding scores did not vary significantly among classrooms, and there

was no difference in mean pretest performance between treatment and comparison class-

rooms. However, both science vocabulary and reading comprehension pretests results indicat-

ed significant between-teacher variability in scores and also significant differences between

treatment and comparison classrooms favoring the comparison group. The comparison class-

rooms, as a group, scored about 0.10 SD higher in reading and about 0.30 SD higher in

science vocabulary at pretest intake. Given the fact that pretests are related to post results, it

is important to account for intake differences when evaluating treatment outcomes.

The results in Table 5 indicate students in both treatment and comparison classrooms

demonstrated statistically significant gains (p < 0.01) from pretest to post-test on the science

understanding measure, science vocabulary measure, and reading comprehension measure.

Science Understanding. Table 6 summarizes the results that speak most directly to the

major question of interest, comparing the differential impact of the treatment and comparison

Table 4

Descriptive results for student assessment

Comparison classrooms Treatment classrooms

Mean n SD Mean n SD

Vocabulary pretests 11.67 992 2.55 11.33 1027 2.62
Vocabulary post-test 12.89 939 2.79 13.72 974 3.51
Reading pretests 10.21 992 3.28 9.59 1026 3.46
Reading post-test 10.72 936 3.06 10.30 969 3.29
Science pretests 12.59 937 2.15 12.42 976 2.12
Science post-test 14.05 937 2.58 15.41 976 3.45

Table 5

Student gains

Gain SE

Science understanding
Treatment 2.99 0.12���
Comparison 1.46 0.10���

Science vocabulary
Treatment 0.69 0.086���
Comparison 0.39 0.079���

Reading comprehension
Treatment 2.38 0.104���
Comparison 1.18 0.090���

���p < 0.01.
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treatment. The results in Table 6 summarize the two models examining the treatment science

understanding results. Model one tests the main effect of the treatment and answers the ques-

tion whether students in treatment classrooms scored higher on the post-test, accounting for

the fact that the treatment was assigned at the classroom level and classrooms were nested

within schools. The results indicate that treatment classrooms scored about 1.5 points higher

on the science understanding post-test, which is an effect size of about 0.65. Model two tests

whether there is a joint effect between the pretests and the treatment, that is, whether the

relationship between the pre-and the post-test is different in treatment and comparison class-

rooms. If this effect is significant, it provides evidence that the treatment is not equally effec-

tive for students with different pretest scores. The results for model two imply that there is no

joint effect (essentially the pre–post slopes are parallel in treatment and comparison class-

rooms and hence there is no differential change in the performance gap between high and low

achievers due to the treatment). Thus, the treatment effect on science understanding is robust

for students at all points along the distribution of pretest scores.7

Science Vocabulary and Reading Comprehension. Table 7 presents results for both the

science vocabulary and the reading comprehension measures. Models three and five present

results testing only the treatment condition and the comparison condition without accounting

for pretest scores. It is important to note the results based on models three and five are not

conditioned on pretests performance and hence are not affected by the relatively low pretests

reliability of the science vocabulary measure. The results indicate that students in the treat-

ment condition scored significantly higher than students in the comparison condition on the

Table 6

Estimated treatment effects on student science understanding post-test results (raw scores)

Modela Base SE

1 2

Base SE Base SE

Fixed effects
Mean post-test 14.07 0.214
Comparison classroom 14.07 0.159��� 14.06 0.158���
Treatmentb 1.47 0.289��� 1.51 0.285���
Treatment effect sizec 0.65 0.65

Treatment interaction
Treatment effect sized 0.05 0.072

SD SD SD

Random effects
Post-tests
Student 2.68 2.68 2.63
Classroom 1.33��� 1.09��� 1.07���
School 0.93��� 0.99��� 1.00���
Deviance 8990.0; df ¼ 4 8969.8; df ¼ 5 8929.6; df ¼ 9

x2 for model improvement 19.8��� 59.9���

���p < 0.01.
aOdd numbered models include only unconditional treatment effects. Even numbered models estimate conditional

treatment effects, conditioned on pretests and pretests by treatment joint.
bTreatment effect represents marginal treatment effect.
cEffect size estimated as d, (Treatment � Comparison)/SD(Outcome).
dEffect size estimated comparing effect at (�1 SD mean of pretests)/SD(outcome).
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science vocabulary measure at post-test. The effect size is approximately 0.23. The results for

reading comprehension indicate that treatment and comparison students did equally well on

the post-test. Models four and six include pretest as a covariate in the analysis and test wheth-

er there are joint (i.e., interaction) effects between pretest and treatment. Neither model four

nor model six indicate that treatment operated differentially for students with differing pretest

scores. Thus, the results for science vocabulary and reading comprehension are the same

whether pretest is entered into the model: a significant effect favoring the treatment for sci-

ence vocabulary and no differences between groups for reading comprehension.

Science Writing. We also examined the impact of the treatment on differences between

groups in performance on the science writing measure. Our analyses were based on a random-

ly selected subset of students who participated in the study (n ¼ 467)8. Table 8 presents the

correlations among the seven writing dimensions assessed in each essay. It is important to

reiterate that ratings were subject to a generalizability analysis that determined that there is

sufficient precision in scores to use them for additional analyses. The results in Table 8 indi-

cate that the correlations among assessed domains are moderate at best indicating that, in

general, they tap into different aspects of student writing.

Table 7

Estimated treatment effects on student science vocabulary and reading comprehension post-test results

(raw scores)

Modela

Science vocabulary Reading comprehension

Base SE 3 SE 4 SE Base SE 5 SE 6 SE

Fixed effects

Mean post-test 13.35 0.22 10.51 0.13

Comparison

classroom

12.97 0.21 12.97 0.17 10.69 0.17 10.46 0.17

Treatmentb 0.75 0.23��� 0.91 0.22��� �0.36 0.26 0.12 0.26

Treatment effect

sizec
0.23 0.22 �0.11 0.09

Treatment interaction

Treatment effect

sized
0.13 0.08 �0.03 0.45

SD SD SD SD SD SD

Random effects

Post-tests

Student 2.90 2.90 2.60 3.00 3.00 2.30

Classroom 0.93��� 0.85��� 0.63 1.05��� 1.03��� 0.45���
School 1.18��� 1.15��� 1.05 0.13� 0.16� 0.02

Deviance 9,245;

df ¼ 4

9,245;

df ¼ 5

8,853;

df ¼ 9

9,334;

df ¼ 4

9,332;

df ¼ 5

8,295;

df ¼ 9

x2 for model

improvement

8.5��� 391.6��� 1.5 1,038���

���p < 0.01.
aOdd numbered models include only unconditional treatment effects. Even numbered models estimate conditional

treatment effects, conditioned on pretests and pretests by treatment joint effects.
bTreatment reflects marginal treatment effect.
cEffect size estimated as d, (Treatment � Comparison)/SD(Outcome).
dEffect size estimated comparing effect at (�1 SD mean of pretests)/SD(Outcome).
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In order to determine whether the treatment had a significant impact on student science

writing, we first examined overall writing achievement based on the observed scores on the

seven dimensions. The results are presented in Table 9. The results indicate that at the pre-

tests, there was marginally suggestive evidence (p < 0.10) that comparison students had

higher writing achievement. The results in Table 9 also indicate that at the post-test students

in the treatment group had higher latent writing achievement (p < 0.05). The treatment effect

size is 0.40.

We conducted additional exploratory analyses to examine separate results on the seven

individual writing dimensions (Table 10). Overall, the results in Table 10 refine the results

Table 8

Correlations among writing dimensions

Vocab. use Vocab. count Evidence Introduction Conclusion Clarity

Pretest
Science concepts 0.54 0.48 0.68 0.48 0.35 0.31
Vocabulary definition 1.00 0.46 0.64 0.42 0.28 0.33
Vocabulary count 1.00 0.31 0.45 0.38 0.31
Evidence 1.00 0.38 0.29 0.36
Introduction 1.00 0.62 0.24
Conclusion 1.00 0.28
Clarity 1.00

Post-test
Science concepts 0.55 0.66 0.63 0.56 0.30 0.52
Vocabulary definition 1.00 0.37 0.67 0.37 0.25 0.36
Vocabulary count 1.00 0.33 0.57 0.31 0.46
Evidence 1.00 0.33 0.17 0.39
Introduction 1.00 0.46 0.44
Conclusion 1.00 0.28
Clarity 1.00

Table 9

Estimated treatment on latent student science writing results

Science writing

Estimate SE

Fixed effects
Mean pretests
Comparison classroom 1.8 0.04�
Treatmenta �0.095 0.057

Mean post-test
Comparison classroom gain 0.22 0.026���
Treatmenta 0.60 0.038���
Treatment effect sizeb 0.4

Random effects
Heterogeneous random effects
Model fit-from null model
Change in deviance x2 442���
Change in df 3

���p < 0.01, �p < 0.10.
aEstimate reflects marginal treatment effect.
bEffect size estimated as d, (Treatment � Comparison)/SD(Outcome).
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presented in Table 9 by suggesting that among the seven writing dimensions, only vocabulary

definition and conclusion demonstrated no treatment effect. The remaining five dimensions

demonstrated statistically significant treatment effects with effect sizes ranging from 0.33

(evidence) to 0.80 (vocabulary count). The models in Table 10 also examined whether there

were any effects on writing associated with science understanding, under the research hypoth-

esis that science understanding has a positive effect on writing scores. The results indicate

that in some instances the pre–post gain9 in science understanding that was related to better

writing scores, and other instances it was overall science understanding as measured at post-

test that was associated with higher writing scores. Both vocabulary count and clarity were

associated with gains on the science understanding measure. The effect sizes were quite large,

0.85 and 0.77 for vocabulary count and clarity, respectively. Both the evidence and conclusion

dimensions were impacted by overall science understanding, as represented by post-test

scores (but not pretests or gains). The effect sizes were moderate, 0.66 and 0.44, for evidence

and conclusion, respectively. These results are consistent with the hypothesis that science

understanding is positively associated with writing performance. It is interesting to note that

the effects of science understanding were independent effects of the treatment; and in one

case (conclusion) occurred without a significant treatment effect. It is important to note that

Table 10

Estimated treatment on student writing by dimension

Writing Dimension

Unconditional proportion

of var. btwn. teachers

Gain

Scores SE

Effect

sizea

Fixed effects
Science concepts 0.19
Comparison classroom 2.1 0.07���
Treatmentb 0.59 0.12��� 0.63

Vocabulary definition 0.11
Comparison classroom 2.01 0.10���
Treatmentb 0.22 0.14

Vocabulary count 0.30
Comparison classroom 2.74 0.13���
Treatmentb 1.49 0.20��� 0.8

Pre–post science GAIN 0.08 0.02��� 0.85
Evidence 0.13
Comparison classroom 1.84 0.09���
Treatmentb 0.38 0.15�� 0.33

Post science score 0.03 0.01��� 0.66
Introduction <0.01
Comparison classroom 2.36 0.07���
Treatmentb 0.35 0.10��� 0.38

Conclusion
Comparison classroom <0.01 1.97 0.04���
Treatmentb 0.06 0.05

Post science score 0.01 0.01 0.41
Clarity 0.13
Comparison classroom 1.81 0.05���
Treatmentb 0.33 0.09��� 0.43

Pre–post science GAIN 0.02 0.01��� 0.77

���p < 0.01, ��p < 0.05.
aTreatment effect sizes as in Table 9, note (3); GAIN and score effect sizes as in Table 9, note (4).
bTreatment effect represents marginal effect of treatment.
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the subset of students for whom we have both writing, pre and post-test science understanding

scores (n ¼ 458) scored similarly on the treatment science pretest and post-test to the entire

sample (23.3 vs. 23.3 on the pretests and 27.4 vs. 27.04 on the post-test, for the writing

sample students and the entire sample, respectively). Hence, these results are not attributable

to performance of students who were exceptional on science performance.

Implementation Results

We gathered information about implementation as a part of the teacher self-report post-

survey data for both treatment and comparison teachers. These data reveal several insights

about the ways in which teachers implemented the treatment and comparison units.

Treatment teachers reported primarily using the treatment unit for science, whereas com-

parison teachers used whatever they typically use to instruct about the topic of light. Because

the comparison teachers were located in multiple school districts around the state, there was

little commonality to what to the materials used as a comparison treatment. The comparison

group teachers reported using a wide range of approaches, though many relied at least in part

on a textbook. Seventy-seven percent of the comparison group teachers reported that they

used a textbook in response to the open-ended survey question, ‘‘What materials did you use

to teach your science unit?’’ Several mentioned the Harcourt Brace Science (11%) or

McGraw Hill Science (4%) textbooks. Sixty percent of comparison group teachers reported

using specific hand-on materials, such as flashlights, prisms, and lenses, and another 15%

reported use of hands-on materials generically or use of lab experiments. Twenty-eight per-

cent reported using technologies, such as video or internet sites. Similarly, treatment and

comparison teachers report using a wide range of materials for literacy instruction, including

basal textbooks, trade books, magazines, and teacher gathered materials from the Internet and

elsewhere.

Treatment teachers reported spending more time on science instruction than comparison

teachers (219.8 vs. 182.3 minutes/week). Treatment teachers, however, reported that more of

their science instruction also included attention to literacy (reading and writing in the context

of the science unit) compared with comparison teachers (77 vs. 61 minutes/week). Even

though we do not know the nature of the reading and writing included in the range of com-

parison science units, we do know that the reading and writing included in the treatment

science unit includes explicit instruction in the use of literacy strategies, rather than just

practice reading and writing. And while treatment and comparison teachers estimate approxi-

mately the same amount of time spent reading in the context of their science unit (43 vs.

41 minutes/week), treatment teachers report more time spent writing in the context of their

science unit (34 vs. 20 minutes/week). Teacher reported time on (respective) task was used as

a covariate for all three outcomes; it proved to be marginally significant (p � 0.10) in science

understanding but not reading nor writing. Thus, although treatment teachers spent more time

on science instruction than comparison teachers, time on task does not appear to account for

treatment effects.

Discussion

Summary of Findings and Discussion

In this work, we have evaluated the efficacy of a curriculum-based approach to science–

literacy integration by assessing its impact on learning in comparison with a ‘‘business-as-

usual’’ approach (teachers addressing the same unit content, light, with their normal curricu-

lum materials in fourth grade classrooms). We asked, How does an integrated approach to

science–literacy curriculum compare to business-as-usual approaches in terms of outcomes of
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science understanding, reading comprehension, science vocabulary and science writing?

Using conservative approaches to statistical analysis—a three level HLM with students

nested within classrooms (teachers) and classrooms nested within schools—we found moder-

ate effect sizes in favor of the treatment for science learning (ES ¼ 0.65). For science vocab-

ulary, we observed a small effect (ES ¼ 0.22) in favor of the experimental treatment. We

have additional evidence of vocabulary learning from the writing measure: while the treat-

ment students did not more often provide definitions of science words in their writing (the

vocabulary definition dimension), they did more often use science words in their writing

(ES ¼ 0.80; the word count dimension). For the science writing measure, we found a moder-

ate multivariate effect for the seven dimensions of the rubric (ES ¼ 0.40). The univariate

analyses of writing demonstrated separate effects favoring the treatment for five of the seven

dimensions: science concepts, vocabulary count (but not vocabulary definition), evidence,

introduction (but not conclusion), and clarity. It is important to note that treatment students

actually included more science concepts than comparison students in their responses to the

writing prompt on their post-test assessments.

Overall, the results show promising, occasionally robust, trends on science and

literacy outcomes, thus contributing to the growing body of evidence (e.g., Guthrie et al.,

1999; Palincsar & Magnusson, 2000; Romance & Vitale, 2001) suggesting that integrated

approaches not only benefit student science learning outcomes, but also support student litera-

cy development. In addition to providing additional evidence that both science outcomes and

literacy outcomes are supported by integration, the study adds to understandings about the

impact of science–literacy integration. Compared with previous studies, this study included a

wider range of literacy measures, including measures of vocabulary and writing. The use of a

range of measures is most significant as it is related to another important aspect of this study

that distinguishes it from previous work: the model of integration that underlies the curricu-

lum tested in this study provided balanced attention to science and literacy growth, rather

than using one domain to achieve growth in the other or to reclaim time in the school day. In

Stoddart et al.’s (2002) framework, this approach is integrated, rather than merely interdisci-

plinary. The curriculum under study here rests on the understanding that engaging students in

reading, writing, and discussing directly linked to their firsthand investigations would not

only support their conceptual understandings, but also their ability to communicate these

understandings in talk and writing, and that doing so would support students’ development of

important dimensions of informational literacy—including reading comprehension, vocabu-

lary knowledge, and expository writing. While we cannot confirm every aspect of this under-

lying conceptual framework, given the non-significant results for reading comprehension, the

results do suggest that explicit attention to literacy in the context of science is supportive of

students’ conceptual growth and at least some dimensions of their informational literacy

skills.

Underlying the broad conceptual framework regarding the efficacy of integration was a

set of specific theoretical principles regarding the relationship between literacy learning and

science learning. These principles included the understanding that many cognitive strategies,

such as predicting, are shared across domains, that vocabulary knowledge and conceptual

knowledge are closely related in content-area learning, and that reading can enhance concep-

tual learning from science investigations. This study evaluated the efficacy of a complex

model of science–literacy integration governed by these principles. As such, we cannot attri-

bute outcomes to specific elements of the framework. At the same time, the results do suggest

that another intervention that relies on the same understandings should provide similar

results.
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Unlike our earlier studies and unlike other studies of science–literacy integration, and

unlike the CORI and IDEAS studies, we found no effect on reading comprehension of science

passages (Wang & Herman, 2005). Several explanations seem plausible, but our data do not

allow us to distinguish definitively among them. First, it could be that the reading comprehen-

sion component of the treatment was not robust enough to support more growth in reading

comprehension than the array of regular reading curricula that characterized the various com-

parison classrooms. While other studies (e.g., Guthrie et al., 2009; McNamara, O’Reilly,

Best, & Ozuru, 2006) have demonstrated gains in reading comprehension in interventions of

similar or lesser duration, the comprehension component of the treatment in this study is only

one element in a complex array of instructional features and goals. The volume of reading

(nine books over eight weeks) and instruction (approximately 20 minutes/week of discussion

and explicit teaching associated with the book reading) is small relative to the amount of

literacy instruction that students, both treatment and comparison, received in their regular

English language arts instruction. With science in general and light in particular, students

began the study as relative novices—and at similar levels of understanding as measured by

the science understanding pretests—and the treatment (intervention or comparison) repre-

sented a major change in dosage in exposure to science concepts. However, given what we

know about instruction with the current crop of commercial reading programs, it is likely that

students in both groups were exposed to a great deal of comprehension instruction by fourth

grade and continued to receive relatively large doses during the study. Although we share

many commitments and instructional principles with programs that have demonstrated effects

on comprehension (e.g., Guthrie et al., 2009; McNamara et al., 2006), attention to compre-

hension in the treatment unit was modest by comparison to these programs. We were, howev-

er, able to show a broad array of other effects for literacy including science vocabulary

knowledge, productive vocabulary use, and writing. Writing, like science, is receiving little

attention in many classrooms, so it is especially important treatment groups made major

advances there.

A second plausible explanation for the lack of an effect on reading comprehension

outcomes focuses on important differences in design and analysis between the current study

in comparison to the Guthrie et al. (2009) and McNamara et al. (2006) studies that show the

comprehension effect. Both of these predecessors were smaller in size and scope than the

study reported herein. They also used comprehension measures that were closely related to

the intervention and the treatment texts (and were highly labor-intensive to score). Further,

they both used conventional analysis of variance rather than HLM as the primary statistical

tool. Consistent with the way in which the treatment was implemented in the present study

(classrooms were randomly assigned to treatment), we used classroom means rather than

individual students as the unit of analysis.

A third explanation turns on the extreme difficulty teachers experience in attempting to

teach reading comprehension strategies (Hacker & Tenant, 2002; Wilkinson & Son, 2011). It

may be that teachers experienced greater difficulties in implementing the reading comprehen-

sion piece of curriculum we provided without substantial professional development. Recall

that the treatment teachers received only a kit of materials with a teacher’s guide. It is possi-

ble that a teacher’s guide provides sufficient support for implementing science and vocabulary

instruction the first time through, but that more time and additional support in the form of

professional development is required to help teachers implement comprehension strategy

instruction around science texts. It is important to note, however, that a curriculum-based

approach has the potential for much wider implementation than one involving intensive pro-

fessional development. This study is true-to-life in the sense that teachers were asked to
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perform an out-of-the-box implementation much like what they would experience in receiving

a new set of materials from a publisher.

Finally, the most plausible explanation is that we have yet to create the valid index of the

construct of science reading comprehension for which we (and others) strive. We used a

format in which students read topically more and less related science passages and answered

multiple-choice questions ranging from the factual to the inferential. The passages and ques-

tions do not align well with aspects of reading or characteristics of text that are unique to

science, let alone our particular approach; in short, we have yet to develop a tool that would

exhibit more precise estimates for reading in the context of science. It is interesting to note

that in our earlier work, we obtained significant treatment effects with younger children using

a different kind of measure—a MAZE test, which is a multiple choice (pick the missing word

from a set of three) version of a cloze (fill in the blank) test. It might be that the MAZE

format is more sensitive to the application of key vocabulary knowledge from the unit in

completing the ‘‘choose-the-word-to-fill-in-the-blank’’ task. All these speculations aside, it is

clear that further work is needed in order to find a way to impact and measure reading

comprehension within the treatment.

Nonetheless, the thrust of the findings across science knowledge, vocabulary, and writing

provide compelling evidence for great uptake and application of key ideas within the integrat-

ed curriculum. Students in the integrated curriculum acquired more vocabulary related to the

key concepts in the unit, they learned more of the big ideas related to light, and, perhaps

most significantly, they used both the ideas and the words when they wrote about what they

had learned. Acquiring knowledge, the words we use to name that knowledge, and using the

ideas to convey what you have learned to others—those seem like the very goals to which

any literacy or science educator would aspire.

In addition to the issues highlighted above, we recognize a number of limitations to the

analytic efforts presented within this artcile. The most significant is related to the amount of

information we could gather about the substance of our ‘‘business-as-usual’’ comparison giv-

en the scope and budget of this study. Although we gathered self-report post-surveys from

teachers regarding the substance and duration of the teaching and learning that took place in

these comparison classrooms, we still have an incomplete picture. Moreover, self-reports can

be unreliable (Cook & Campbell, 1979). Future research efforts are being designed to gather

additional implementation data in order to gain a more complete picture.

Additionally, while we took a broad perspective on the aspects of literacy that can sup-

port and be supported by science in the design of the intervention, we assessed only vocabu-

lary knowledge, reading comprehension, and science writing. While the intervention also

included attention to participation in science discussions, reading fluency, and the use of text

features and structures, we were limited in the amount of time we had available for student

assessment. While the limited measures risk a simplistic interpretation of the role of language

and literacy in science, they do mirror those aspects of literacy instruction that are most

central to educational standards in fourth grade.

Even with these limitations, this study addresses an important issue in science education

and literacy education and contributes additional important evidence to the studies on sci-

ence–literacy integration, by employing a broader range of measures and utilizing a compari-

son group that features a real and familiar alternative—teachers using content-comparable

science units. Unlike most other studies on science–literacy integration, ours focuses on the

impact of curriculum use only. It is noteworthy that treatment teachers taught the treatment

unit ‘‘cold,’’ that is, without the benefit of any professional development. The results pre-

sented herein provide critical evidence for supporting integrated science–literacy approaches
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such as the one described here. The implications of these findings are especially significant

given that the current school accountability context has privileged time for literacy and math-

ematics over time for science and other subjects. Further, these findings are timely given the

current convergence of the vision spelled out in the Common Core State Standards for

English Arts and Literacy in Science and Technical Subjects (Achieve, 2010) and the

Framework for K-12 Science Education (NRC, 2011), that students must be able to respond

to the communication demands of science.

While a recent research synthesis by Minner, Levy, and Century (2010) provided strong

evidence of the effectiveness of an inquiry-based approach to science fueled by firsthand

experiences, and while inquiry-based science is the indisputable standard of high-quality sci-

ence teaching, this study and those that preceded it suggest that the integration of experiences

with language and literacy can support science learning while maintaining an inquiry orienta-

tion. The current study also suggests that doing so supports important learning outcomes in

both domains.

The research literature is beginning to provide images of the integration of text- and

inquiry-based approaches to science (e.g., Howes, Lim, & Campos, 2009). While this study

and others have supported the integration of literacy and inquiry-based science in principle, it

is also becoming clear that not all forms of integration are equal. For example, Howes et al.

followed three elementary teachers as they integrated science and literacy. The researchers

found that not all approaches to integration were equally supportive of students’ involvement

in inquiry, and that integration can result in the privileging of literacy learning over science

learning.

In closing, we want to be clear that we believe the foregrounding of inquiry is central to

the efficacy of our model of science–literacy integration. In our opinion, one of the most

important aspects of the model tested in this study is the development of roles for text that

support students’ involvement in extended, multi-modal, and question-driven investigations.

While more work is needed to refine some aspects of this model, we believe that there is

sufficient evidence to suggest that literacy and firsthand experiences in science are best posi-

tioned as tools for inquiring about the natural world. In practice, this means foregrounding

compelling science questions, following an inquiry cycle and using tools of text and firsthand

experience to investigate those questions, and supporting access to science concepts, lan-

guage, and text along the way.

Notes

1For example, an entire section of the April 23, 2010 issue of Science was devoted to this very

issue (Alberts, 2010).
2With respect to the use of a subset of items for the science understanding measure: This was done

in order to ensure that the measure was a good test of the content being taught in comparison class-

rooms, as well as treatment classrooms. In the end, there were only small changes in performance based

on the use of the shorter assessment. For example, the treatment group’s pre-test performance on the

two versions (in terms of percent correct) was 0.8% on the pretest and 0.4% on the post-test. The differ-

ences for the comparison students were 1.5% on the pretest and 1.1% point on the post-test. The abso-

lute difference (between treatment and comparison students) in scores is larger for the shorter test, but

the standard deviation is larger for the 42-item test. The larger standard deviation associated with the

longer test is consistent with the notion of construct irrelevant variance (specifically on the post-test,

where comparison classroom students were assessed on content that they did not have opportunities to

learn). This is corroborated by the correlations between the 42 and 23 item tests on the post-test, which

is 0.91 for treatment students and 0.70 for control students. Treatment effects based on the 23-item

assessment are slightly larger (due to increased precision realized by utilizing the subset of the item
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most closely aligned with the state content standards) than treatment effects based on the 42-item assess-

ment. Overall, the two assessments minimally changed student performance, and empirically allow for

the same inferences about results.
3Additional materials are available as Supporting Information accompanying the online article.
4We use the term class and teacher interchangeably. It is natural to consider a group of students

sitting in a classroom, but each classroom is taught by a single teacher. Moreover, student performance

is considered to be impacted by the teacher.
5Comparison classroom given (2).
6We used simple mean replacement and indicators for cases with missing values to test whether

students with replaced scores demonstrated significantly different results than students with complete

data. The indicator was not significant; and given the relatively small attrition, treatment effect estimates

were unchanged.
7We also analyzed the Science Understanding results using IRT rather than raw scores. While the

effect size was somewhat smaller, neither the overall results nor the inferences drawn about effectiveness

of the treatment changed.
8All students were administered the writing assessment, but we limited the analysis to a random

subset due to costs associated with raters scoring each of the essays.
9Testing the impact of Gains tests whether there was transfer in student learning–implying compli-

mentary science and writing performance. Testing the impact of science understanding levels tests

whether content knowledge impacts writing related to the content.
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